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Chapter 4

MiniBooNE Neutrino Flux

Predictions

In this Chapter, predictions for the muon neutrino and electron neutrino fluxes at

the MiniBooNE detector are presented. The program used to obtain the simulated

neutrino fluxes, its physics assumptions, and the flux predictions are described in

detail. Section 4.1 describes some generalities on the “beam Monte Carlo” code used;

Section 4.2 discusses the simulation of the beamline geometry, materials, and of the

primary proton beam; Sections 4.4, 4.5 and 4.6 summarize the physics input to the

simulation for the processes of most direct relevance for producing muon and electron

neutrinos at MiniBooNE; the flux predictions are given in Section 4.7 .

4.1 The beam Monte Carlo simulation code

4.1.1 Inputs to neutrino flux predictions

The purpose of the MiniBooNE beam Monte Carlo is to predict the fluxes at the

MiniBooNE detector for all relevant neutrino species (νµ, ν̄µ, νe, ν̄e) as a function of

neutrino energy, per proton on target and per unit area, and to obtain an accurate
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estimate of the associated flux systematic uncertainties. The flux understanding is of

primary importance for most MiniBooNE analyses, including for example neutrino

cross-section meaurements, and νµ → νe and νµ → ν6µ oscillation analyses.

The MiniBooNE flux prediction makes use of physics inputs both external and

internal to the experiment. The most important physics input that is external to

MiniBooNE is meson production data in proton-Beryllium hadronic interactions for

proton beam momenta in the ∼ 10 GeV/c range, since the flux uncertainty is domi-

nated by the secondary meson production uncertainty. Therefore, the most important

design requirement of the simulation tool developed at MiniBooNE for neutrino flux

predictions is its flexible hadronic physics model interface.

In addition, the MiniBooNE data itself will provide inputs to the neutrino flux

predictions. First, the observation of muon neutrinos at MiniBooNE will constrain

the electron neutrino flux component due to muon decays. Second, neutrino fluxes

from Kaon decays will be constrained by the measurement of muons from Kaon decays

in the Little Muon Counters along the decay region.

4.1.2 Code structure

Currently, the combination of two simulations programs is used at MiniBooNE to

obtain neutrino flux predictions. First, a GEANT4-based Monte Carlo code is re-

sponsible for simulating the chain of processes going from primary protons hitting

the MiniBooNE target, until decays of mesons and muons yielding neutrinos occur.

GEANT4 [2, 3] is a software package designed to accurately simulate the passage of

particles through matter. In particular, the GEANT4 application used at MiniBooNE

simulate: the geometry and the materials present in the MiniBooNE target hall and

decay region; the physics processes governing the interactions of baryons, mesons

and leptons involved in neutrino production; the generation of events, initiated by

Booster primary protons specified according to their beam optics characteristics; the
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tracking of particles through the materials present in the target hall and decay region,

and through the horn magnetic field; the storage of simulated data at various levels

of refinement, from single physics process information, to event-level information for

the entire neutrino parentage history. A second, FORTRAN-based Monte Carlo code

uses the output of the GEANT4 program as input, and is responsible for generating

the neutrino kinematics distributions from meson and muon decays, and for obtain-

ing the final neutrino fluxes extrapolated at the MiniBooNE detector with negligible

beam Monte Carlo statistical error.

The physics interface of GEANT4 allows the user to choose among an abundant

set of built-in models, and also to easily implement custom-defined process cross-

sections and final state descriptions, making GEANT4 an ideal simulation toolkit for

the MiniBooNE beam Monte Carlo. The class category hierarchy of the C++ based

beam Monte Carlo code follows the schematics given in Fig. 4.1 (taken from [3]).

4.2 Simulation of beamline geometry, materials,

and primary proton beam

4.2.1 Geometry and materials

The beam Monte Carlo program simulates the most relevant materials and volumes

present in the target hall and decay region. In Fig.4.2, four images from the beamline

geometry simulation are shown. The images show the entire decay region, and de-

tails of the target pile region, horn, and target. The volumes shown in red are made

with Beryllium, the regions shown in blue with iron. The other two relevant mate-

rials are concrete from the decay region walls and for the collimator system located

downstream of the horn, and Aluminum for the MiniBooNE horn.
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Figure 4.1: GEANT4 class categories [3]. Each box represents a class category. The circle

at the end of a straight line means that the class category which has this circle uses the other

line-connected category.
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Figure 4.2: The MiniBooNE beamline geometry implemented in the simulation. The pic-

tures show the entire 50 m decay region, and details of the target pile region, horn, and

target.

4.2.2 Primary proton event generator

The event generator in the beam Monte Carlo simulation is very simple: all that

is needed is to construct one primary proton per event with 8 GeV kinetic energy,

directed towards the Beryllium target. To account for the fact that the beam op-

tics is not perfect, some smearing in the initial transverse position (x, y) and angular

divergence (θx, θy) of the beam is introduced, in the coordinate system where the z

axis points along the beam direction, and y points upwards. Also, the mean (x0, y0)

positions and the mean (θx,0, θy,0) directions of the primary beam can be changed for

systematic study purposes, together with the longitudinal position z0 for the primary
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Parameter x0 σx y0 σy θx,0 σθ,x θy,0 σθ,y

Value 0 1.51 mm 0 0.75 mm 0 0.66 mrad 0 0.40 mrad

Table 4.1: Beam optics parameters used in the beam Monte Carlo simulation. See text for

definitions. The parameters correspond to an initial longitudinal position along the beam

direction for the generated protons of z0 =-1 cm, and to a coordinate system having the

MiniBooNE Beryllium target located at: 3.5 cm < z < 74.6 cm,
√

x2 + y2 < 4.76 cm.

proton at birth; all beam optics parameters refer to this longitudinal position. The

position and angular smearing are described by gaussian distributions. More specifi-

cally, the initial position and momentum of the generated primary proton are 1:



x = x0 + σxran1

y = y0 + σyran2

z = z0

px =
√

E2
p −m2

p(θx,0 + σθxran3)

py =
√

E2
p −m2

p(θy,0 + σθyran4)

pz =
√

E2
p −m2

p − p2
x − p2

y

(4.1)

where ran1, ran2, ran3, ran4 are four random numbers drawn from a gaussian dis-

tribution of mean zero and variance one, Ep = Kp + mp, where Kp=8 GeV and mp

is the proton mass. The MiniBooNE beam optics parameters (x0, σx, y0, σy, z0,

θx,0, σθx , θy,0, σθy) used in the flux simulation are given in Tab. 4.1. These values

are determined from detailed simulations of Booster protons in the 8 GeV Fermilab

neutrino line, and cross-checked with measurements from several beam detectors mea-

suring beam positions, directions, and profiles at various locations along the beamline.

It is estimated that this choice of beam optics parameters yields a 99.8% targeting

efficiency.

1The small-angle appropximation is assumed throughout the simulation of primary beam param-

eters.



9

Neutrino Flavor νµ ν̄µ νe ν̄e

Flux fraction (% ) 92.7 6.6 0.6 0.1

Table 4.2: Neutrino flavor composition of the MiniBooNE neutrino flux in neutrino run-

ning, as predicted by the beam Monte Carlo simulation.

4.3 Properties of typical neutrinos reaching the

MiniBooNE detector

In Sections 4.4, 4.5, 4.6, we discuss several physics processes of relevance for Mini-

BooNE flux predictions. As an introduction to these Sections, we first discuss some

properties of typical events yielding neutrinos at the MiniBooNE detector, as pre-

dicted by the beam Monte Carlo simulation. This Section gives some qualitative idea

of what “relevant” means.

Table 4.2 shows the predicted neutrino flavor composition of the MiniBooNE

neutrino flux in neutrino running mode. The flux is dominated by muon neutrinos,

comprising 92.7% of the total neutrino flux, with a 6.6% flux contribution from muon

antineutrinos. Electron neutrinos comprise about 0.6% of the total neutrino flux.

Table 4.3 shows the most likely “neutrino history” for neutrinos reaching Mini-

BooNE, divided per neutrino flavor. The muon neutrino flux is mostly (86.1% ) due

to the decay of positive pions, from pions that are in turn produced directly by inelas-

tic interactions of primary protons. The contribution of muon neutrinos from pions

created by secondary protons and neutrons is also non-negligible, as is non-negligible

the contribution of muon neutrinos from charged Kaon decays. Electron neutrinos

are dominated by the decays of muons produced by positive pions, which are in turn

directly produced in inelastic interactions of primary protons (48.0% of the total elec-

tron neutrino flux). Contributions to the electron neutrino flux from charged and

neutral Kaon decays, and from other muon decay chains, are also significant.
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Neutrino flavor Process Flux fraction

per flavor (% )

νµ p → π+ → νµ 86.1

p → p → π+ → νµ 7.3

p → K+ → νµ 2.8

p → n → π+ → νµ 1.9

Other 1.9

ν̄µ p → π− → ν̄µ 55.0

p → p → π− → ν̄µ 16.6

p → n → π− → ν̄µ 12.0

Other 16.4

νe p → π+ → µ+ → νe 47.6

p → K+ → νe 32.7

p → K0
L → νe 7.2

p → p → π+ → µ+ → νe 5.0

Other 7.5

ν̄e p → K0
L → ν̄e 65.5

p → π− → µ− → ν̄e 9.8

Other 24.7

Table 4.3: Most likely history for muon neutrinos reaching the MiniBooNE detector, as

simulated by the beam Monte Carlo. The arrows indicate either an inelastic interaction, or

a decay.

The remaining two tables in this Section focus on muon neutrinos, and in partic-

ular on the p → π+ → νµ events that mainly contribute to the total muon neutrino

flux. Table 4.4 lists average properties concerning pion production, focusing, and pion

decay kinematics. Pions yielding muon neutrinos at MiniBooNE are produced in the

Beryllium target with an average momentum and angle of ∼ 2.2 GeV/c and ∼ 100
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Quantity Description Value

〈pπ+,in〉 Initial π+ momentum 2.17 GeV/c

〈ϑπ+,in〉 Initial π+ angle 106 mrad

〈lπ+,B〉 π+ path in horn field 82.1 cm

〈Bπ+〉 Horn field along π+ trajectory 0.71 Tesla

〈pπ+,fin〉 Final π+ momentum 2.08 GeV/c

〈ϑπ+,fin〉 Final π+ angle 30 mrad

〈Eν〉 Neutrino energy 0.762 GeV

Table 4.4: Average properties for p → π+ → νµ processes giving muon neutrinos at Mini-

BooNE, as simulated by the beam Monte Carlo. The properties in this Table illustrate pion

production, focusing, and decay kinematics characteristics.

mrad, respectively. Pions cross loose a small fraction of energy crossing various ma-

terials, and are focused by a ∼ 1 Tesla horn magnetic field over distances of the order

of ∼ 1 meter, as well as by the collimator system, resulting in average pion angles at

decay of about 30 mrad. Neutrinos reaching the MiniBooNE detector are produced

forward in the pion centerof-mass frame, resulting in typical neutrino energies that

are a little less than the maximum neutrino energy of Eν = (m2
π −m2

µ)Eπ/m2
π, where

mπ and mµ are π+ and µ+ masses, respectively, and Eπ is the total π+ energy at

decay.

Table 4.5 shows other properties for p → π+ → νµ events yielding muon neu-

trinos at MiniBooNE, related to beamline geometry, energy loss, and pion decay

characteristics. Primary protons travel about 22 cm on average in the Be target be-

fore producing positive pions. The pions that are produced by protons can interact

via several physics processes (see Sections 4.4, 4.5) while crossing few centimeters

of Beryllium and Aluminum materials, before decaying into neutrinos after typical

pathlengths of 20 m in air.

In the following Sections 4.4, 4.5, 4.6, we quantify the agreement between the
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Particle Material 〈∆E〉 (MeV) 〈l〉 (cm)

p Beryllium 56.3 22.3

π+ Aluminum 22.3 5.9

π+ Beryllium 21.5 8.5

π+ Iron 11.3 1.1

π+ Concrete 6.5 2.9

π+ Air 2.9 1900

Table 4.5: Average properties for p → π+ → νµ processes giving muon neutrinos at Mini-

BooNE, as simulated by the beam Monte Carlo. The properties in this Table illustrate

beamline geometry, energy loss, and pion decay characteristics, and are classified per beam-

line material. In the Table, 〈E〉 is the average particle energy loss, and 〈l〉 is the average

particle pathlength in the material.

physics inputs to the beam Monte Carlo simulation, with expectations drawn from

experimental data points, data-driven parametrizations, and theoretical predictions.

Each physics input is tested individually, by disabling all other physics processes in

the simulation.

4.4 Hadronic Interactions

4.4.1 Inelastic interactions of primary protons in the Mini-

BooNE target

An accurate simulation of inelastic interactions of primary protons in the MiniBooNE

target material is essential for obtaining accurate neutrino flux predictions. For

this reason, a custom-defined description of both the total proton-Beryllium inelastic

cross-section, and of the final state for these inelastic interactions, is used at Mini-
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BooNE.

The proton-Beryllium total inelastic cross-section assumed in the simulation for

8.9 GeV/c Booster protons is σinel =189.3 mb, as obtained from an interpolation

of the cross-sections measured in the BNL E910 experiment at 6.4 and 12.3 GeV/c

proton beam momenta [4]. This value corresponds to an inelastic interaction length

for protons in Beryllium of λinel =42.3 cm. The impact of varying this cross-section

value within its measured uncertainty is taken into account in the estimate of the flux

systematic uncertainty.

Concerning the final state in inelastic proton-Beryllium interactions, the seven

types of secondaries of most direct relevance for neutrino fluxes are simulated: π+,

π−, K+, K−, K0
L, protons and neutrons. For each inelastic interaction, the multiplici-

ties and kinematic distributions for the first three particle types are drawn from three

parametrizations of double-differential, inclusive production cross-sections described

next, while production cross-sections obtained from MARS15 [5, 6] simulations are

assumed for the latter four particle types.

The double-differential, inclusive production cross-sections for the secondaries

S = π+, π−, K+ are described according to “Sanford-Wang” parametrizations [7]:

d2σ(p + Be → S + X)

dpdΩ
= c1p

c2(1− p

pbeam − c9

) exp[−c3
pc4

pc5
beam

−c6ϑ(p−c7pbeam cosc8 ϑ)]

(4.2)

where X means any other particle in the final state, pbeam is the proton beam mo-

mentum in GeV/c, p and θ are the secondary momentum and angle in units of GeV/c

and radians, respectively, d2σ/(dpdΩ) is expressed in units of mb/(GeV/c sr), and

the parameters c1, . . . , c9 are empirical parameters obtained from fits to meson pro-

duction data. For pion production, the parameter c9 is not fit, but set to one. The

value of these parameters assumed by the beam Monte Carlo simulation are given in

Tab. 4.6. Concerning muon (anti)neutrino fluxes, the simulation of π+ production

is particularly important in the current MiniBooNE neutrino running mode, while a

correct π− production simulation would be essential for a likely future MiniBooNE
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Secondary Sanford-Wang parameter

Particle c1 c2 c3 c4 c5 c6 c7 c8 c9

π+ 206.4 1.030 5.902 2.012 2.127 5.510 0.9958E-01 12.03

π− 184.1 1.052 6.706 1.275 1.424 5.225 0.9439E-01 10.74

K+ 12.53 1.654 0.314 1.038 0.174 4.658 0.106 10.53 2.635

Table 4.6: Values for the Sanford-Wang π± and K+ production parameters used in

the beam Monte Carlo simulation to describe meson production in proton-Beryllium

interactions [4].

antineutrino run. On the other hand, the knowledge of K+ production affects the

estimate for the amount of intrinsic electron neutrinos in the beam from K+ decays.

The Sanford-Wang parameters given in Tab. 4.6 are obtained from fits of meson

production data from a number of hadro-production experiments, with proton beam

momenta similar to the Booster proton momentum, and sensitive to a phase space

for meson production of relevance to MiniBooNE. A summary of the data used in the

MiniBooNE Sanford-Wang fits is given in Tab. 4.7.

While some data used in the MiniBooNE Sanford-Wang fits is available in the lit-

erature, the dominant contribution (in terms of statistical power) for π± production is

based on a new analysis of Brookhaven E910 data at 6.4 and 12.3 GeV/c proton beam

momenta on a thin Beryllium target, done by collaborators from both experiments.

Figure 4.3 shows a comparison between E910 12.3 GeV/c data on π+ production, and

the parametrization assumed in the beam Monte Carlo simulation. In the near future,

meson production data from the CERN HARP experiment [12], obtained with Beryl-

lium targets of various thicknesses and at the Booster beam momentum, will also

be used as inputs to the beam Monte Carlo simulation. The uncertainties in meson

production data obtained from the Sanford-Wang fits are propagated into neutrino

flux systematic uncertainties.

Given the assumptions described above, the particle multiplicities per inelastic



15

Secondary Proton beam Secondary particle phase space Data Ref.

particle S momentum θS,min θS,max pS,min pS,max points

(GeV/c) (mrad) (mrad) (GeV/c) (GeV/c)

π+ 12.3 42 331 0.6 5.4 71 [4]

12.4 2 206 2.1 6.3 53 [7]

6.4 71 353 0.6 4.2 29 [4]

10.1 61 61 1.0 4.5 14 [8]

π− 12.3 42 331 0.6 5.4 70 [4]

12.4 2 206 2.1 6.3 32 [7]

6.4 71 353 0.6 4.2 28 [4]

K+ 19.2 13 70 6.0 16.0 41 [9]

12.3 0 175 0.5 1.0 9 [10]

9.5 62 62 3.0 6.5 5 [11]

Table 4.7: Summary of hadro-production data used to obtain the MiniBooNE, Sanford-

Wang parametrizations of the double-differential, meson production inclusive cross-sections.

Secondary particle type π+ π− K+ K− K0
L p n

Average multiplicity 0.799 0.596 0.048 0.003 0.030 1.544 1.341

Table 4.8: Average multiplicity per inelastic collision for secondary particles produced in

inelastic collisions of 8.9 GeV/c protons in the MiniBooNE Beryllium target.

interaction for all simulated secondaries are given in Tab.4.8. The average multiplici-

ties per inelastic collision are defined as the integral the double-differential, inclusive

production cross-section over the entire secondaries phase space, divided by the total

proton-Beryllium inelastic interaction. Proton and neutron productions are the most

abundant, followed by π+ production.

Figure 4.4 shows the one-dimensional projections along the longitudinal and

transverse momentum components at production of the secondaries simulated in the
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Figure 4.3: The double-differential π+ production cross-section in proton-Beryllium in-

teractions, as a function of pion production momentum pπ and angle θπ. The six panels

correspond to: θπ (mrad) = 42 (a), 95 (b), 153 (c), 212 (d), 272 (e), 331 (f). The points

correspond to BNL E910 data at pbeam = 12.3 GeV/c [4]; the dashed lines correspond to

the beam Monte Carlo π+ production assumption, specified by Eq. 4.2 and Tab. 4.6, for

the same 12.3 GeV/c beam momentum.

interactions of 8.9 GeV/c protons in Beryllium, normalized per unit area. We note

here the leading particle effect in the proton and neutron distributions, with momenta

extending up to incident proton momentum, and that the pion kinematic distributions

at production are peaked at considerably lower momenta compared to the typical mo-

menta for pions yielding neutrinos directed toward the MiniBooNE detector (see Tab.

4.4).
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Figure 4.4: One-dimensional projections along the longitudinal (top) and transverse (bot-

tom) momentum components pz and pt of the double-differential production cross-sections

for simulated secondaries from inelastic interactions of 8.9 GeV/c proton in Beryllium.

All histograms are normalized to unit area. Panels a) and d) refer to baryon production:

solid histograms for protons, dashed for neutrons; b) and e) to non-strange meson produc-

tion: solid histograms for π+, dashed for π−; c) and f) to strange meson production: solid

histograms for K+, dashed for K−, dotted for K0
L.

4.4.2 Other inelastic interactions

Secondary interactions of pions and protons also play a non-negligible role in deter-

mining the MiniBooNE neutrino flux. These particles, once they have been produced

in a primary inelastic interaction, can still traverse significant amounts of target and

horn material (relative to the inelastic interaction length, see Tab. 4.5), and in turn

interact inelastically. Therefore, we describe here the simulation of inelastic interac-
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tions of secondary pions and protons of various momenta in Beryllium and Aluminum.

These inelastic processes, with the exception of Kp > 7.5 GeV protons in Beryl-

lium discussed in Section 4.4.1, are described by built-in GEANT4 physics models.

The final state description model typically used in the simulations is part of the

‘Low Energy Parametrization Driven Model”, based on the GEANT3.21 GHEISHA

package [3]. For the purposes of estimating flux systematic uncertainties, alternative

built-in physics models have also been explored, namely the “Bertini Intranuclear

cascade model”, and the “binary cascade model” [3].

Figure 4.5 shows average properties of inelastic interactions of secondary π+’s

and protons in Beryllium and Aluminum, as a function of the projectile momentum.

The average properties shown are the inelastic interaction length λinel, the average

number 〈Nπ〉 of π+’s in the inelastic interaction final state, the average momentum

〈pπ〉 for final state π+’s, and the average angle 〈θπ〉 between the incoming projectile

and the outgoing final state π+’s.

Experimental data are available on the total inelastic length, and are shown for

comparison in Fig. 4.5. The inelastic interaction lengths for π+’s and protons are

similar, of the order of 40-50 cm. The inelastic cross-sections show a mild momentum

dependence over the range 1 < p (GeV/c) < 10.

Pions in the final state tend to be more numerous for higher energy projectiles,

for π+ projectiles than for p projectiles, and show little dependence on the target

material. The average π+ momenta tend to be much smaller than the projectile

momenta, and π+ emission angles are large.

4.4.3 Elastic interactions

Apart from scattering inelastically, pions and protons can also interact elastically in

the target hall and decay region materials. Unlike the inelastic processes described

above, no particle absorption, particle production, or charge exchange are present in
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Figure 4.5: Inelastic processes for π+’s and protons interacting in Beryllium and Alu-

minum, as a function of the projectile momentum p. From left to right: inelastic π+-Be,

π+-Al, p-Be, and p-Al processes. From top to bottom: inelastic interaction length λinel,

and average number per inelastic collision 〈Nπ〉, momentum 〈pπ〉 and angle with respect to

the projectile direction 〈ϑπ〉, of final state π+’s. The curves show the beam Monte Carlo

assumptions, the points show experimental data: • from Ref. [13], ◦ from [14], � from [4], ∗

from [15]. Moreover, the values within dashed lines in the p-Be panels show the assumptions

adopted for primary protons, described in Section 4.4.1.
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Figure 4.6: Elastic processes for π+’sd and protons interacting in Beryllium and Aluminum,

as a function of projectile momentum p. From left to right: elastic π+-Be, π+-Al, p-Be, and

p-Al processes. From top to bottom: elastic interaction length λel, and average projectile

deflection angle 〈ϑ〉. The arrows in the top plots indicate the high-energy values from [1].

this case, and the only effect is an angular deflection of the projectile with respect to

its original direction. In Figure 4.6, the elastic interaction length λel and the average

elastic scattering deflection angle assumed by the beam Monte Carlo simulation are

shown as a function of projectile momentum.

The elastic interaction length is smaller in Aluminum than in Beryllium, and

similar for protons or pions; moreover, the elastic interaction length tends to increase

with projectile momemtum, in the 1 < p (GeV/c) < 10 momentum range. Over

this range, typical values in Beryllium are 110-205 cm, and 45-115 cm in Aluminum.

significantly larger than the corresponding inelastic interaction lengths. From the

data in Ref. [1], and assuming that the total nuclear collision cross-section is given

by the sum of the total elastic and inelastic cross-section, the elastic interaction length

for > 60 GeV/c protons can be extracted. The elastic interaction length values from

[1] are 117.0 and 77.7 cm in Beryllium and Aluminum, respectively, which are also
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shown in Fig. 4.6.

The mean deflection angles are much smaller in elastic collisions than in the

previously discussed inelastic collisions. The angles tend to be larger, on average, for

low-energy projectiles, and are very similar for protons and pions. Typical deflection

angles in one elastic collision are 10-150 mrad, and are therefore significant.

4.5 Electromagnetic processes

4.5.1 Particle trajectories in the MiniBooNE horn magnetic

field

The horn magnetic field provides a large increase in flux: the neutrino rate at Mini-

BooNE per proton on target has been measured to be about six times larger in

horn-on running mode, compared to horn-off running mode. Therefore, it is neces-

sary to accurately simulate the motion of charged particles in the field, in order to

obtain reliable flux predictions.

The transportation algorithms through a non-uniform magnetic field region used

by the beam Monte Carlo simulation have been validated via an independent track-

ing algorithm. The simple test case considered here is that of a magnetic field region

that is similar to the MiniBooNE horn one, with an azimuthal fielld of magnitude

B = µ0I/(2πr), where µ0 = 4π · 10−7 is the permittivity of free space, I =170 kA

and r =
√

x2 + y2, in the region 2.2 cm < r < 30 cm, 0 < z < 180 cm, and zero

magnetic field otherwise. Positive pions of various momenta, produced at (x = 0, y =

0, z = 30 cm) and with an initial momentum direction of px/pz = 1/8, py = 0, are

tracked through this simple geometry. The particle trajectories are described by the
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Figure 4.7: Trajectories in the horn magnetic field for 0.5, 1.5, 2.5, 3.5, and 4.5 GeV

kinetic energy π+’s, with initial conditions: (x0 = 0, z0 = 30 cm, px,0/pz,0 = 1/8). The

points are from a beam Monte Carlo simulation, the dashed curves from the solution of Eq.

4.3 discussed in the text.

following system of two coupled, second-order differential equations:
ẍ(t) = cB

x(t)
ż(t), ẋ(0) = v0 sin θ, x(0) = x0

z̈(t) = − cB

x(t)
ẋ(t), ż(0) = v0 cos θ, z(0) = z0

(4.3)

where, in SI units:

cB =
µ0I

2π
· q

mπγ
(4.4)

where µ0 and I are defined above, q is the (positive) electron charge, mπ the π+ mass,

γ is the relativistic γ factor for the pion, v0 = c
√

γ2 − 1/γ, θ = arctan(1/8) in this

case.

The particle trajectories as calculated by the beam Monte Carlo simulation, and

by an independent tracking algorithm based on a Runge-Kutta-Nystrom numerical

integration [16] of Eq. 4.3, are shown to be consistent with each other in Fig.4.7, for

pions of various momenta.
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Figure 4.8: Multiple Coulomb scattering results obtained from a simulation of 10 cm of

material, as a function of projectile momentum p. From left to right: multiple Coulomb

scattering of π+ in Be, π+ in Al, p in Be, p in Al. The average projectile deflection angle,

〈θ〉, is shown. The dashed curves, almost indistinguishable from the beam Monte Carlo solid

curves, show the predictions from Eqs. 4.5 and 4.6 in the text.

4.5.2 Multiple Coulomb scattering

Any charged particle traversing a material undergoes many small electromagnetic

scatters that can be described cumulatively, at a macroscopic level. The beam Monte

Carlo simulation uses the Lewis formalism to simulate multiple Coulomb scattering.

The multiple Coulomb scattering angle distributions for pions and protons, simu-

lated by the beam Monte Carlo program through 10 cm of Beryllium and Aluminum

materials, are shown in Fig.4.8 as a function of projectile momenta. This material

thickness is chosen in this example because it is comparable to the materials traversed

by protons and pions yielding muon neutrinos at MiniBooNE (see Tab. 4.4).

Multiple Coulomb scattering is more important for low-momentum than for

high-momentum projectiles, for Aluminum than Beryllium, and for protons than for

pions. Typical scattering angles over 10 cm of material traversed are between 1 and

20 mrad.

The beam Monte Carlo results can be confronted with the Highland formula from
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Ref. [1], describing the average multiple Coulomb scattering angle 〈θ〉:

〈θ〉H =

√
π

2
σθ (4.5)

where:

σθ =
13.6 MeV

βcp

√
z/X0[1 + 0.038 ln(z/X0)] (4.6)

In Eq.4.6, βc is the projectile velocity, p its momentum, z ' 10 cm is the material

traversed, X0 is the material radiation length, equal to 35.28 cm for Beryllium and

8.90 cm for Aluminum [1]. The dashed curves in Fig. 4.8 show the average deflection

angle due to multiple Coulomb scattering as predicted by the Highland formula of

Eqs. 4.5 and 4.6, and good agreement with the beam Monte Carlo simulations is

obtained.

4.5.3 Ionisation by charged hadrons

The last electromagnetic process discussed here is energy loss by charged hadrons. In

the beam Monte Carlo simulation, this process simulates both the continuous energy

loss due to ionisation and atomic excitation via the Bethe-Bloch formula, as well as

the “discrete” part of the ionisation via δ-ray emission. As for multiple Coulomb

sacattering processes, the macroscopic effects due to energy loss are quantified for

particle crossing z =10 cm of Beryllium and Aluminum materials, and the results

from beam Monte Carlo simulations are shown in Fig. 4.9. In Figure 4.9, we define

∆ as the projectile energy loss across the material thickness:

∆ ≡ −
∫ 10 cm

0

dE

dz
dz (4.7)

The energy loss results in Fig. 4.9 can be compared with the Bethe-Bloch formula

given in [1], for π+ or p projectiles in Beryllium (Aluminum):

− dE

dx
= ρKz2Z

A

1

β2
[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ

2
] (4.8)
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Figure 4.9: Energy loss results obtained from a simulation of 10 cm of material, as a

function of projectile momentum p. From left to right: energy loss of π+ in Be, π+ in Al, p

in Be, p in Al. From top to bottom: average energy loss per unit material traversed, ∆/z;

average projectile deflection angle, 〈θ〉. The dashed curves, almost indistinguishable from

the beam Monte Carlo solid curves, show the predictions from Eqs. 4.8 and 4.9 in the text.

where K = 0.307075 MeV g−1 mol−1, z = 1 is the projectile electric charge in units

of e, Z = 4 (13) is the target electric charge in units of e, A = 9.01 (26.98) is the

target atomic weight in units of g/mol, β is the projectile’s velocity in units of c,

mec
2 = 0.511 MeV is the electron mass, γ = (1 − β2)−1/2, Tmax = 2mec

2β2γ2/(1 +

2γme/M + (me/M)2) is the maximum kinetic energy which can be imparted to a

free electron in a single collision, M = 139.57 or 938.27 MeV/c2 is the projectile’s

mass, I = 63.7 (166.0) eV is the mean excitation energy, and δ is the density effect

correction to ionization energy loss, given by:

δ =


2(ln 10)x− C̄ , if x ≥ x1;

2(ln 10)x− C̄ + a(x1 − x)k , if x0 ≤ x < x1;

δ0102(x−x0) , if x < x0

(4.9)
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where x = log10(p/Mc), x0 =0.0592 (0.1708), x1 =1.6922 (3.0127), C̄ =2.7847

(4.2395), a =0.80392 (0.08024), k =2.4339 (3.6345), δ0=0.14 (0.12) [1]. The ex-

pected energy loss given by Eqs. 4.8 and 4.9 is consistent with the beam Monte Carlo

assumptions.

Figure 4.9 also shows the mean projectile deflection angles after traversing z =10

cm of material. These angles are very small, of the order of 1 mrad, and negligi-

ble with respect to the deflection angles due to nuclear elastic scattering or multiple

Coulomb scattering.

4.6 Neutrinos from meson and muon decays

Neutrinos reaching the MiniBooNE detector are produced via the decays of charged

pions, kaons, and muons. Particle lifetimes, decay branching ratios, Lorentz boosts,

and center-of-mass kinematics of the neutrinos produced in the decays affect the

neutrino flux predictions, and are discussed here.

The neutrino parent lifetimes and branching ratios used in the simulation are

given in Tab. 4.9, for π+, K+, K0
L, and µ+ neutrino parents, and the corresponding

decays of negatively-charged particles are also simulated. Given the relevance of

decays yielding electron neutrinos for the MiniBooNE νµ → νe search, the GEANT4

built-in decay channels and branching ratios have been updated to yield more accurate

electron neutrino predictions.

The effect of Lorentz boosts is shown in Fig. 4.10. Figure 4.10a) shows the decay

length λdecay as a function of neutrino parent momentum p. The data points from

beam Monte Carlo simulations match well the γβcτ expectations, where the lifetime

τ for a neutrino parent type is the one given in Tab. 4.9, and γβ = p/m, where

m is the neutrino parent mass. Also, Lorentz boosts are applied in the simulation

to determine the neutrino kinematics in the laboratory frame, once the neutrino

kinematics is generated in the parent rest frame. In Figure 4.10b), we show the
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Particle Lifetime Decay mode Branching ratio

(ns) (%)

π+ 26.03 µ+νµ 99.9877

e+νe 0.0123

K+ 12.37 µ+νµ 63.17

π+π0 21.2

π+π+π− 5.6

π0e+νe 5.13

π0µ+νµ 3.2

π+π0π0 1.7

K0
L 51.70 π0π0π0 19.45

π−e+νe 20.4

π+e−ν̄e 20.27

π−µ+νµ 13.55

π+µ−ν̄µ 13.46

π0π+π− 12.87

µ+ 2197.03 e+νeν̄µ 100.0

Table 4.9: Particle lifetimes, and BooNEG4Beam decay modes and branching ratios.

neutrino energy as a function of the parent neutrino momentum p in the laboratory

frame, for π+ → µ+ → νµ decays and for neutrinos crossing a disk of radius Rdet =6.1

m and located L =541 m from the pion production location, that is for the neutrino

phase space of relevance to MiniBooNE. The dashed curves in Fig. 4.10b) correspond

to the maximum and minimum neutrino energies, given by: Eν,max = γECM
ν (1 + β)

Eν,min = γECM
ν (1 + β cos θCM

max)
(4.10)

where: ECM
ν = (m2

π −m2
µ)/(2mπ) is the neutrino energy in the pion rest frame, γ =√

1 + (p/mπ)2, β =
√

γ2 − 1/γ, θCM
max = 2 arctan(γ tan θmax) and θmax = arctan(Rdet/L)
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Figure 4.10: Validation of decay routines in the beam Monte Carlo simulation. Fig. 4.10a)

shows the decay length λdecay as a function of the parent momentum p, for (from bottom

to top) K+, π+, K0
L, µ+ parents. Fig. 4.10b) shows the average neutrino energy in π+ →

νµ → µ+ decays as a function of pion momentum p, for neutrinos crossing the MiniBooNE

detector. The points are the results from beam Monte Carlo simulations, the dashed curves

are the minimum and maximum neutrino energies discussed in the text.

are the angles between the pion direction and the neutrino directions in the pion rest

frame and in the laboratory frame, respectively. From Fig. 4.10b), one finds that the

average neutrino energy predicted by the beam Monte Carlo simulation lies approxi-

mately in between the minimum and maximum energies from Eq. 4.10. This is the ex-

pected result, given the isotropic neutrino angular distribution in the pion rest frame:

in this case, dN/d cos θCM = const in the pion rest frame implies dN/dEν = const in

the laboratory frame, for fixed pion momenta.

Finally, we discuss the kinematics of neutrino decays in the rest frame of the

neutrino parents, for the most relevant decays yielding muon and electron neutrinos,

separately.
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Figure 4.11: Muon neutrino kinematic distributions in the neutrino parent rest frame. The

top row shows the neutrino energy distribution, the bottom row shows the neutrino angular

distribution with respect to the z-direction in the laboratory frame. The left column refers

to π+ decays, the right column to K+ decays. The histograms are the results of beam Monte

Carlo simulations, the dashed curves are the expectations discussed in the text.

4.6.1 Decays into muon neutrinos

Muon neutrinos reaching MiniBooNE are mostly produced by π+ decays, with a non-

negligible contribution from K+ decays (see Tab. 4.3). The histograms in Fig. 4.11

show the muon neutrino energy and angular distributions in π+ and K+ decays at

rest. The angular distributions are flat, while the neutrino energy from the π+/K+ →

µ+νµ two-body decays is (mπ/K − mµ)/(2mπ/K). For Kaon decays, a small fraction

(' 5%) of muon neutrinos is simulated with a continuous energy distribution from

K+ → π0µ+νµ three-body decays (see Tab. 4.9).
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Figure 4.12: Electron neutrino kinematic distributions in the neutrino parent rest frame.

The left column refers to µ+ decays, the middle column to K+ decays, and the right column

to K0
L decays. The top row shows the neutrino energy distribution, the bottom row shows

the neutrino angular distribution with respect to the z-direction in the lab frame, defined as

the beam direction. The three curves for muons correspond to the cases: Pz = −1, 0,+1,

where Pz is the projection along z of the muon polarization vector in the muon rest frame.

The histograms are the results of beam Monte Carlo simulations, the dashed curves are the

expectations discussed in the text.

4.6.2 Decays into electron neutrinos

Muon decays and leptonic decays of Kaons (both charged and neutral) are predicted

to yield almost the entire electron neutrino flux at MiniBooNE (see Tab. 4.3). The

neutrino energy and angular distribution from µ+ decays is, neglecting terms propor-

tional to the electron mass [17]:

dN

dxd cos θν

∝ 12x2

4π
(1− x)(1∓ Pz cos θ) (4.11)

where cos θν is the neutrino emission angle with respect to the beam direction z, Pz

is the projection along z of the muon polarization vector in the muon rest frame, and

x = 2Eν/mµ, with 0 < x < 1. In π+ → µ+ → νe decays, the muon polarization in

the muon rest frame is calculated from the known muon polarization in the pion rest

frame, and boosting the polarizaton vector into the muon rest frame.
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For the Kaon three-body decays yielding electron neutrinos (that is, K → πeνe,

or Ke3 decays), the neutrino angular distribution, in the Kaon rest frame and with

respect to the beam direction, are flat. Assuming that only the vector current con-

tributes to the Kaon semileptonic decay matrix element, and neglecting electron mass

terms, the neutrino energy distribution in the Kaon rest frame is [18]:

dN

dEν

∝
∫ Ee,+

Ee,−

dEe(2EeEν −mkE
′
π)|f+(t)|2 (4.12)

where all quantities refer to the Kaon rest frame, Ee is the electron energy, E ′
π ≡

Emax
π −Eπ, Emax

π = (m2
K +m2

π)/(2mK) is the maximum energy that can be transferred

to the pion, Eπ is the pion energy, f+ is a form factor depending only on the square

of the four-momentum transfer to the leptons, t = (pk − pπ)2 = m2
k + m2

π − 2mkEπ,

and Ee,± are integration limits on the electron energy: Ee,− =
m2

K−m2
π

2mk
− Eν

Ee,+ = 1
2
(mk − m2

π

mk−2Eν
)

(4.13)

The beam Monte Carlo simulation also assumes, as customarily done, a linear depen-

dence of the form factor f+ on t:

f+(t) ∝ (1 + λ+t/m2
π) (4.14)

For K+
e3 (K0

e3) decays, the coefficient λ+ for the linear expansion of the form factor

is 0.0277 (0.0291) [1].

The expected kinematics for electron neutrinos in muon decays and semileptonic

Kaon decays described above are shown with dashed lines in Fig. 4.12, and agree well

with the beam Monte Carlo results.

4.7 Neutrino flux predictions at the MiniBooNE

detector

In this Section we present the results of the beam Monte Carlo simulations, that is

the neutrino flux predictions at the MiniBooNE detector location, as a function of



32

neutrino energy and for all relevant neutrino flavors.

Table 4.10 shows a summary on neutrino flux predictions, given in terms of

Neutrino Flavor Neutrino Parent φ (cm−2pot−1) 〈Eν〉

all all 5.22 · 10−10 0.760

νµ all 4.84 · 10−10 0.778

νµ π+ 4.69 · 10−10 0.734

νµ K+ 1.42 · 10−11 2.250

ν̄µ all 3.47 · 10−11 0.488

ν̄µ π− 3.24 · 10−11 0.470

νe all 3.07 · 10−12 0.939

νe µ+ 1.70 · 10−12 0.665

νe µ+ 1.07 · 10−12 1.321

ν̄e all 3.44 · 10−13 0.888

ν̄e K0
L 2.55 · 10−13 1.032

Table 4.10: Summary of neutrino flux predictions at MiniBooNE, for neutrino running

mode. The fluxes φ, as well as the neutrino energy 〈Eν〉 averaged over the flux distribution,

are given. The most important contributions from the various neutrino flavors and neutrino

parent types are shown.

total flux and mean neutrino energy averaged over the flux distributions, for the

various neutrino flavors and for the most important neutrino parent types. The

overall neutrino flux prediction is 5.22 · 10−10 cm−2pot−1, with a mean neutrino en-

ergy of 0.76 GeV. The flux prediction is 4.84 · 10−10 cm−2pot−1 for muon neutrinos,

3.47 · 10−11 cm−2pot−1 for muon antineutrinos, 3.07 · 10−12 cm−2pot−1 for electron

neutrinos, 3.44 · 10−13 cm−2pot−1 for electron antineutrinos, yielding a 0.6% νe/νµ

flux ratio, and a 0.7% (νe + ν̄e)/(νµ + ν̄µ) flux ratio.

Figure 4.13 shows the neutrino energy distributions for muon neutrinos, muon

antineutrinos, and electron neutrinos. Figure 4.14 shows the muon neutrino energy
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Figure 4.13: Predicted neutrino flux as a function of neutrino energy, for all neutrinos

reaching MiniBooNE, in neutrino running mode. The thick solid histogram is for all neu-

trinos, the thin solid histogram for νe, the dashed histogram for ν̄µ, the dotted histogram for

νµ. The fluxes are shown on a logarithmic scale on the left, and on a linear scale on the

right.

distribution, together with the partial contributions from π+ and K+ decays. Fig-

ure 4.15 shows the electron neutrino energy distribution, together with the partial

contributions from µ+, K+, and K0
L decays.
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Figure 4.14: Predicted muon neutrino flux as a function of neutrino energy, for all muon

neutrinos reaching MiniBooNE, in neutrino running mode. The solid histogram is for all

muon neutrinos, the dashed histogram for muon neutrinos from K+ decay, the dotted his-

togram for muon neutrinos from π+ decay. The fluxes are shown on a logarithmic scale on

the left, and on a linear scale on the right.
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Figure 4.15: Predicted electron neutrino flux as a function of neutrino energy, for all elec-

tron neutrinos reaching MiniBooNE, in neutrino running mode. The thick solid histogram

is for all electron neutrinos, the thin solid histogram for electron neutrinos from µ+ decay,

the dashed histogram for electron neutrinos from K+ decay, the dotted histogram for elec-

tron neutrinos from K0
L decay. The fluxes are shown on a logarithmic scale on the left, and

on a linear scale on the right.
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